Skip to main content
Log in

Elevated expression of hormone-regulated rat hepatocyte functions in a new serum-free hepatocyte-stromal cell coculture model

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The specific performance of the adult hepatic parenchymal cell is maintained and controlled by factors deriving from the stromal bed; the chemical nature of these factors is unknown. This study aimed to develop a serum-free hierarchical hepatocyte-nonparenchymal (stromal) cell coculture system. Hepatic stromal cells proliferated on crosslinked collagen in serum-free medium with epidermal growth factor, basic fibroblast growth factor, and hepatocyte-conditioned medium; cell type composition changed during the 2-wk culture period. During the first wk, the culture consisted of proliferating sinusoidal endothelial cells with well-preserved sieve plates, proliferating hepatic stellate cells, and partially activated Kupffer cells. The number of endothelial cells declined thereafter; stellate cells and Kupffer cells became the prominent cell types after 8 d. Hepatocytes were seeded onto stromal cells precultured for 4–14 d; they adhered to stellate and Kupffer cells, but spared the islands of endothelial cells. Stellate cells spread out on top of the hepatocytes; Kupffer cell extensions established multiple contacts to hepatocytes and stellate cells. Hepatocyte viability was maintained by coculture; the positive influence of stromal cell signals on hepatocyte differentiation became evident after 48 h; a strong improvement of cell responsiveness toward hormones could be observed in cocultured hepatocytes. Hierarchial hepatocyte coculture enhanced the glucagon-dependent increases in phosphoenolpyruvate carboxykinase activity and messenger ribonucleic acid (mRNA) content three- and twofold, respectively; glucagon-activated urea production was elevated twofold. Coculturing also stimulated glycogen deposition; basal synthesis was increased by 30% and the responsiveness toward insulin and glucose was elevated by 100 and 55%, respectively. The insulin-dependent rise in the glucokinase mRNA content was increased twofold in cocultured hepatocytes. It can be concluded that long-term signals from stromal cells maintain hepatocyte differentiation. This coculture model should, therefore, provide the technical basis for the investigation of stroma-derived differentiation factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, S.; Takahashi, K.; Matsumoto, K.; Nakamura, T. Activation of Met tyrosine kinase by bepatocyte growth factor is essential for internal organogenesis in Xenopus embryo. Biochem. Biophys. Res. Commun. 234: 8–14; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bader, A.; Knop, E.; Kern, A., et al. 3-D coculture of hepatic sinusoidal cells with primary hepatocytes—design of an organotypical model. Exp. Cell. Res. 226: 223–233; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Berthou, L.; Langouet, S.; Grude, P.; Denefle, P.; Branellec, D.; Guillouzo, A. Negative regulation of Apo A-I gene expression by retinoic acid in rat hepatocytes maintained in a coculture system. Biochim. Biophys. Acta 1391: 329–336; 1998.

    PubMed  CAS  Google Scholar 

  • Bezerra, J. A. Liver development: a paradigm for hepatobiliary disease in later life. Semin. Liver Dis. 18: 203–216; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia, S. N.; Balis, U. J.; Yarmush, M. L.; Tomer, M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASB J. 13: 1883–1900; 1999.

    CAS  Google Scholar 

  • Braet, F.; De Zanger, R.; Sasaoki, T., et al. Assessment of a method of isolation, purification and cultivation of rat liver sinusoidal endothelial cells. Lab. Invest. 70: 944–952; 1994.

    PubMed  CAS  Google Scholar 

  • Christ, B.; Nath, A.; Heinrich, P. C.; Jungermann, K. Inhibition by recombinant human interleukin-6 of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and of the insulin-dependent induction of GK gene expression in cultured rat hepatocytes. Hepatology 20: 1577–1583; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Christ, B.; Nath, A.; Jungermann K. Mechanism of the inhibiton by insulin of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Biol. Chem. Hoppe-Seyler 371: 395–402; 1990.

    PubMed  CAS  Google Scholar 

  • Corlu, A.; Kneip, B.; Lhadi, C., et al. A plasma membrane protein is involved in cell contact-mediated regulation of tissue-specific genes in adult hepatocytes. J. Cell. Biol. 115: 505–515; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Coulevard, A.; Bringuier, A. F.; Dauge, M. C., et al. Expression of integrins during liver organogenesis in humans. Hepatology 27: 839–847; 1998.

    Article  Google Scholar 

  • Dunn, J. C. Y.; Tompkins, R. G.; Yarmush, M. L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J. Cell Biol. 116: 1043–1053; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Fleig, W. E.; Nöther-Fleig, G.; Steudter, S.; Enderle, D.; Ditschuneit, H. Regulation of insulin binding and glycogensis by insulin and dexamethasone in cultured rat hepatocytes. Biochim. Biophys. Acta 847: 352–361; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt, R.; Schuler, M.; Schorner, D. The spontaneous induction of glutamine synthetase in pig hepatocytes cocultured with RL-ET-14 cels is completely inhibited by triiodothyronine and okadaic acid. Biochem. Biophys. Res. Commun. 246: 895–898; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Geerts, A.; Lazou, J. M.; De Bleser, P.; Wisse, E. Tissue distribution and proliferation kinetics of fat-storing cells in carbon tetrachloride injured rat liver. Hepatology 13: 1193–1202; 1991.

    PubMed  CAS  Google Scholar 

  • Goulet, F.; Normand, C.; Morin, O. Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8: 1010–1018; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Gugen-Guillouzo, C.; Clement, B.; Baffet, G., et al. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes cocultured with another liver epithelial cell type. Exp. Cell. Res. 143: 47–54; 1983.

    Article  Google Scholar 

  • Gutmann, I.; Bergmeyer, H. U. Bestimmung von Harnstoff. In: Bergmeyer, H. U., ed. Methoden der enzymatischen Analyse. Weinheim; Verlag Chemie; 1974; 1842–1846.

    Google Scholar 

  • Iredale, J.; Arthur, M. J. P. Hepatocyte-matrix interactions. Gut 35: 729–732; 1994.

    PubMed  CAS  Google Scholar 

  • Isom, H. C.; Scott, T.; Georgoff, I. Maintenance of differentiated rat hepatocytes in primary culture. Proc. Natl. Acad. Sci. USA 82: 3252–3256; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Ito, T.; Nemoto, W. Über die Kupfferschen Sternzellen und die Fettspeicherungszellen (fat storing cells) in der Blutkapillarwand der memschlichen Leber. Okajamas Folia Anat. Japonica 24: 243–258; 1952.

    CAS  Google Scholar 

  • Jung, J.; Zheng, M.; Goldfarb, M.; Zaret, K. S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284: 1998–2003; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Karam, W. G.; Ghanayem, B. I. Induction of replicative DNA synthesis and PPAR alpha-dependent gene transcription by Wy-14643 in primary rat hepatocyte and non-parenchymal cell coculture. Carcinogenesis 18: 2077–2083; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Krause, P.; Markus, P. M.; Schwartz, P., et al. Hepatocyte-supported serum-free culture of rat liver sinusoidal endothelial cells. J. Hepatol., 32: 718–726; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper, J.; Casteleyn, E.; van Berkel, T. J. C. Regulation of liver metabolism by intercellular communication. Adv. Enzyme Regul. 27: 193–208; 1993.

    Google Scholar 

  • Kuri-Harcuch, W.; Mendoza-Figueroa, T. Cultivation of rat hepatocytes on 3T3 cells: expression of various liver differentiated function. Differentiation 41: 148–157; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Labarca, C.; Paigen, K. A simple, rapid and sensitive DNA assay procedure. Anal. Biochem. 102: 344–352; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad, W. J.; Schuetz, E. G.; Redford, K. S.; Guzelian, P. S. Hepatocellular phenotype in vitro si influenced by biophysical features of the collagenous substratum. Hepatology 13: 282–288; 1991.

    PubMed  CAS  Google Scholar 

  • Loreal, O.; Levavasseur, F.; Fromaget, C.; Gros, D.; Guillouzo, A.; Clement, B. Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro. Am. J. Pathol. 143: 538–544; 1993.

    PubMed  CAS  Google Scholar 

  • Meredith, M. J. Rat hepatocytes prepared without collagenase: prolonged retention of differentiated characteristics in culture. Cell Biol. Toxicol. 4: 405–425; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos, G. K.; Bowen, W. C.; Zajac, V. F., et al. Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology 29: 90–100; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Mitaka, T.; Norioka, K. I.; Mochizuki, Y. Redifferentiation of proliferated rat hepatocytes cultured in L15 medium supplemented with EGF and DMSO. In Vitro Cell. Dev. Biol. 29A: 714–722; 1993.

    CAS  Google Scholar 

  • Mitaka, T.; Sato, F.; Mizuguchi, T.; Yokono, T.; Mochizuki, Y. Reconstruction of hepatic organoid by small hepatocytes and hepatic nonparenchymal cells. Hepatology 29: 111–125; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Morin, O.; Normand, C. Long-term maintenance of hepatocyte functional activity in co-culture: requirements for sinusoidal endothelial cells and dexamethasone. J. Cell. Physiol. 129: 103–110; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, M.; Ishida, Y.; Keogh, A.; Strain, A. Evaluation of the function of primary human hepatocytes co-cultured with the human hepatic stellate cell (HSC) line LI90. Int. J. Artif. Organs 21: 353–359; 1998.

    PubMed  CAS  Google Scholar 

  • Püschel, G. P.; Jungermann, K. Integration of function in the hepatic acinus: intercellular communication in neural and humoral control of liver metabolism. Prog. Liver Dis. 12: 19–46; 1994.

    PubMed  Google Scholar 

  • Rojkind, M.; Novikoff, P. M.; Greenwel, P., et al. Characterization and functional studies on rat liver fat-storing cell line and freshly isolated hepatocyte coculture system. Am. J. Pathol. 146: 1508–1520; 1995.

    PubMed  CAS  Google Scholar 

  • Runge, D.; Schmidt, H.; Christ, B.; Jungermann, K. Mechanism of the permissive action of dexamethasone on the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in cultured rat hepatocytes. Eur. J. Biochem. 198; 641–649; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Seubert, W.; Huth, W. On the mechanism of gluconeogenesis and its regulation. Biochem. Z. 343: 176–191: 1980.

    Google Scholar 

  • Shimaoka, S.; Nakamura, T.; Ichihara, A. Stimulation of growth of primary cultured adult rat hepatocytes without growth factors by coculture with nonparenchymal cells. Exp. Cell. Res. 172: 228–242; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Talamini, M. A.; McCuskey, M. P.; Buchman, T. G.; De-Maio, A. Expression of alpha2-macroglobulin by the interaction between hepatocytes and endothelial cells in coculture. Am. J. Physiol. 275: R203-R211; 1998.

    PubMed  CAS  Google Scholar 

  • Tateno, C.; Takai-Kajihara, K.; Yamasaki, C.; Sato, H.; Yoshizato, K. Heterogeneity of growth potential of adult rat hepatocytes in vitro. Hepatology 31: 65–74; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Utesch, D.; Oesch, F. Dependency of the in vitro stabilization of differentiated functions in liver parenchymal cells on the type of cell line used for co-culture. In Vitro Cell. Dev. Biol. 28A: 193–198; 1992.

    PubMed  CAS  Google Scholar 

  • Villafuerte, B. C.; Kopp, B. L.; Pao, C. I.; Gu, L.; Birdsong, G. G.; Phillips, L. S. Coculture of primary rat hepatocytes and nonparenchymal cells permits expression of insulin-like growth factor binding protein-3 in vitro. Endocrinology 134: 2044–2050; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wanson, J. C.; Mosselmans, R.; Brouwer, A.; Knook, D. L. Interaction of adult rat hepatocytes and sinusoidal cells in coculture. Biol. Cell. 36: 7–16; 1979.

    Google Scholar 

  • Wisse, E. Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells. J. Ultrastruct. Res. 46: 393–426; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Yagi, K.; Yamada, C.; Serada, M.; Sumiyoshi, N.; Michibayashi, N. Reciprocal regulation of prothrombin secretion and tyrosine aminotransferase induction in hepatocytes. Eur. J. Biochem. 227: 753–756; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, N.; Imazato, K.; Masumoto, A. Growth stimulation in a primary culture by soluble factor(s) secreted from nonparenchymal liver cells. Cell Struct. Funct. 14: 217–229; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmelin Probst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ries, K., Krause, P., Solsbacher, M. et al. Elevated expression of hormone-regulated rat hepatocyte functions in a new serum-free hepatocyte-stromal cell coculture model. In Vitro Cell.Dev.Biol.-Animal 36, 502–512 (2000). https://doi.org/10.1290/1071-2690(2000)036<0502:EEOHRR>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0502:EEOHRR>2.0.CO;2

Key words

Navigation